412 research outputs found

    Effects of Natural Zeolites on Bioavailability and Leachability of Heavy Metals in the Composting Process of Biodegradable Wastes

    Get PDF
    The bioavailability and leachability of heavy metals play an important role in the toxicity of heavy metals in the final compost followed by land application. This chapter examines the effects of natural zeolite on bioavailability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) in the form of water soluble and diethylenetriaminepentaacetic acid (DTPA) extractable. The toxicity characteristic leaching procedure (TCLP) test was performed to examine the leachability of heavy metals. Water solubility, DTPA extractability, leachability, and most bioavailable fractions were reduced during agitated pile composting (APC) and rotary drum composting (RDC) of water hyacinth with zeolite addition. The addition of the natural zeolite (clinoptilolite) during the composting process led to an increase in Na, Ca, and K concentrations and significantly reduced the water solubility and DTPA and TCLP extractability of heavy metals. The addition of an appropriate amount of natural zeolite during the composting process enhanced the organic matter degradation, thereby increasing the conversion into the most stabilized organic matter and reducing the bioavailability and leachability of heavy metals

    Emission Control Technology

    Get PDF

    Versatile double hydrophilic block copolymer: dual role as synthetic nanoreactor and ionic and electronic conduction layer for ruthenium oxide nanoparticle supercapacitors

    Get PDF
    The facile synthetic approach to ruthenium oxide nanoparticles using double hydrophilic block copolymers (DHBCs) and their application toward the supercapacitor are presented. Nanostructured hydrous ruthenium oxide (RuO2) nanoparticles are synthesized using a double hydrophilic block copolymer of poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) as a template, forming a micelle upon addition of the ruthenium precursor, which then transformed into RuO2 nanoparticles of controlled dimension with reducing agents. The synthesized hydrous RuO2 center dot xH(2)O nanoparticles are very stable for several months without any noticeable aggregates. Furthermore, we have demonstrated their utility in application as supercapacitors. Through annealing at 400 degrees C, we found that the crystallinity of RuO2 nanoparticles increases considerably with a simultaneous transformation of the surrounding double hydrophilic block copolymer into ionic and electronic conducting buffer layers atop RuO2 nanoparticles, which contribute to the significant enhancement of the overall specific capacitance from 106 to 962 F g(-1) at 10 mV s(-1). The RuO2 nanoparticles annealed at 400 degrees C also exhibit a superior retention of capacitance over 1000 cycles at very high charge-discharge rates at 20 A g(-1). We envision that the double hydrophilic block copolymer will provide a facile and general tool in creating functional nanostructures with controlled dimensions that are useful for various applications.close9

    Limits of Binaries That Can Be Characterized by Gravitational Microlensing

    Full text link
    Due to the high efficiency of planet detections, current microlensing planet searches focus on high-magnification events. High-magnification events are sensitive to remote binary companions as well and thus a sample of wide-separation binaries are expected to be collected as a byproduct. In this paper, we show that characterizing binaries for a portion of this sample will be difficult due to the degeneracy of the binary-lensing parameters. This degeneracy arises because the perturbation induced by the binary companion is well approximated by the Chang-Refsdal lensing for binaries with separations greater than a certain limit. For binaries composed of equal mass lenses, we find that the lens binarity can be noticed up to the separations of ∌60\sim 60 times of the Einstein radius corresponding to the mass of each lens. Among these binaries, however, we find that the lensing parameters can be determined only for a portion of binaries with separations less than ∌20\sim 20 times of the Einstein radius.Comment: 5 pages, 3 figures, 1 tabl

    First Demonstration of Ultra-Thin SiGe-Channel Junctionless Accumulation-Mode (JAM) Bulk FinFETs on Si Substrate with PN Junction-Isolation Scheme

    Get PDF
    A SiGe-channel junctionless-accumulation-mode (JAM) PMOS bulk FinFETs were successfully demonstrated on Si substrate with PN junction-isolation scheme for the first time. The JAM bulk FinFETs with fin width of 18 nm exhibits excellent subthreshold characteristics such as subthreshold swing of 64 mV/decade, drain-induced barrier lowering (DIBL) of 40 mV/V and high Ion/Ioff current ratio ( \u3e 1 x 105). The change of substrate bias from 0 to 5 V leads to the threshold voltage shift of 53 mV by modulating the effective channel thickness. When compared to the Si-channel bulk FinFETs with fin width of 18 nm, Si and SiGe channel devices exhibits comparable subthreshold swing and DIBL. For devices with longer fin width, SiGe channel devices exhibits much lower DIBL, indicating superior top-gate controllability and robustness to substrate bias compared to the Si channel devices. A zero temperature coefficient point was observed in the transfer curves as temperature increases from -120 to 120°C, confirming that mobility degradation is dominantly affected by phonon scattering mechanism
    • 

    corecore